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1. INTRODUCT ION

In a recent paper the author showed that contrary to popular
opinion, strict Fréchet differentiability of the class of M-functionals
is frequently possible. A necessary requirement for existence of the
Fréchet derivative is that the defining psi function is uniformly
bounded, and this naturally excludes those nonrobust estimators
such as the maximum likelihood estimator in normal parametric models.
On the other hand, in that paper, smoothness assumptions were imposed

on the defining psi function which are not appropriate for many common

robust proposals in M-estimation theory, such as Huber's(1964) minimax
solution and Hampel's(1974) three part redescender used in estimating h
location. A host of robust solutions for more general parametric

families are obtained through Hampel's(1968) lemma 5, and generalizations

IRIRT S RNOR,

of it (cf. Hampel 1978), and these almost invariably are functions with

"sharp corners'". Indeed the problem that is presented by failure of

i

psi functions to have continuous partial derivatives has been the

focus of papers by Huber(1967), Carroll(1978) with respect to proofs

v g .

of asymptotic normality. While Fréchet differentiability of the M-functional
apriori gives asymptotic normality of the M-estimator, at least for

real valued observation spaces, it also gives a direct expansion

bt bl Rk

by which the degree of robustness can be directly measured through the

gross error sensitivity. The latter quantity is the supremum of the
absolute value of the influence curve of Hambel(1968,1974), and Huber(1977)
assuming existence of the Fréchet derivative shows that the maximum
asymptotic bias in contaminated neighbourhoods of a parametric distribution
is proportional to the gross error sensitivity. Subsequently Fréchet
differentiability of a statistical functional is an important tool

in the robust description of an estimator, and complements the definition

of a robust functional as one that is weakly continuous (cf. Hampel 1971).
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In this paper the methods of nonsmooth analysis , described in the book

by F.H. Clarke(1983), are introduced to the theory of statistical expansions,
and are usea here in the proofs of weak continuity and Fréchet differentia-
bility of M-functionals. Subsequently the conditions for Fréchet
differentiability given in Clarke(1983) can be relaxed to include most
popular M-functionals.

The M-estimator is a solution of equations

[ xR ) = 0, (1.1)
R

where Fn is that distribution which attributes atomic mass 1/n to each

of n independent identically distributed observations X Xn, having

1700
common distribution F& G , the space of probability distributions

defined on some separable metrizeable observation space R. For the

—T———
- e

applications in this paper it is only necessary to consider R = E,

the real line. The parameter t&€0, an open subset of Euclidean

r-space Er, and F = {FT : T€0} 1is a parametric family where the

usual assumption is that F = Fe for some 6&0. The function y: Rx0 + EF
can be defined through minimization of some loss function, or obtained
by some other optimal criteria.. The theory of robustness makes use of
the M-functional T defined on G, so that more generally T[G] is a

solution of equations

, dG = 0 1.2
(o = | 200 2000 a

if a solution exists, T[G] = » otherwise. Thus the estimator is

given by the functional T evaluated at Fn , and its asymptotic properties
follow from continuity and differentiability of T at F with respect to

suitable metrics defined on ¢ . This approach to asymptotic theory for

statistics was first considered by Von Mises(1947).
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To avoid ambiguity, and also for good statistical practice, the T1
concept of a selection functional p was introduced by Clarke(1983),
in order to identify in the event of several solutions of the equations (1.2),

that root which is to be the estimator. That is, the M-functional

is defined by y,p so that
'{:né I(\D,G) Q(G:T) = O(G: TN,D,G]),
where
I(y,6) = {t | J p(x,t) dG(x) = 0, t€06}
R

,if a solution exists. Otherwise T[y,p,G] = », The functional T

is then Fréchet differentiable at F with respect to the pair (G,d,),
for suitable metrics d, on G, if T can be approximated by a linear

'
functional T

F
G - H of members of G, so that

which is defined on the linear space spanned by the

differences

| TIE) - TIF] - T,E - B) | = 0(4,(G,F)) (1.3)

as d (G,F) » 0, GEG. Essentially the expansion for Fréchet differen-

tiability is dependent on a local expansion of equations(l.2), and
a robust selection functional will automatically select the Fréchet
differentiable root, whenever one exists. To the latter end one uses
an auxilliary functional p(G,t) = |t - 8| to prove existence of a unique
Fréchet differentiable root in a local neighbourhood of the parameter 6
when considering the derivative at Fe. Also it is sufficient to consider
the expansion (1.3) for T defined on G, and the usual mathematical
extension of the domain of T to the linear space of signed measures is

of little importance here.

The Fréchet derivative may be considered strong in the sense
that existence of the Fréchet derivative for statistical functionals
implies existence of the weaker Hadamard or compact derivatives of
Reeds(1976), Fernholz(1983), and the G3teaux derivative discussed by

Kallianpur(1963), a special case of which is the influence curve




IC(x,F,T) = &Am T[(1-e)F+ed ] - T(F]

£>0
€

; here Sx is the distribution attributing mass 1! to the point x.

The Giteaux derivative is given by

I IC(x,F,T) d(G-F)(x),

which coincides with the Fréchet derivative when the latter exists.
Unfortunately comments by Kallianpur(1963) which were in specific
relation to the maximum likelihood estimator (mle) led other researchers
to believe the derivative too strong to obtain. Indeed Huber(1981)
states Unfortunately the concept of Fré&chet differentiability appears
too strong : in too many cases, the Fréchet derivative does not exist,
and even if it does, the fact is difficult to establish. .

In Clarke(1983) simple conditions for Fréchet differentiability of

M-functionals were given together with a counterexample to the comments

of Kallianpur.

Boos and Serfling(1980) introduce the related notion of a
quasi-differential which assumes the same expansion (1.3), but
restricts G=Fn and allows for small order errors in probability
with respect to the Kolmogorov distance between Fn and F. This
expansion does not offer the same properties of robust description
of the estimating functional, and even the mean functional satisfies
this stochastic form of differentiability. Beran(1977) also adopts
a differential approach using the Hellinger metric, though this appears

to be for more specific application.

A weaker set of conditions than conditions A of Clarke(1983)
are introduced in section 2, though for smooth psi functions conditions

A of that paper are easier to apply. Theorem 2.1 of this paper is

4

nonsmooth psi functions. It can be considered as a variation

necessary to show condition A, jntroduced here, holds for the popular

e
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or a generalization of the Glivenko Cantelli result. Conditions A'
are used in sections 3 and 4 in the theorems that give existence of a
unique continuous and Féchet differentiable root of equations (1.2).
In particular the arguments for weak continuity follow when either of
Lévy or Prokhorov metrics are used. Important examples of application

are given in section 5, together with the conclusion.

2. A DISCUSSION OF DEFINITIONS AND CONDITIONS A’

Suppose f maps E' to itself and 6 is a point near which
f is Lipschitz. Denote Q. to be the set of points at which f fails
to be differentiable, which by Radermachers theorem is known to be a
set of Lebesgue measure zero. Let Jf(t) be the usual r x r matrix

of partial derivatives whenever t ¢fo .

Definition 2.1: The generalized Jacobian of £ at 6 , denoted by

3f(8) , is the convex hull of all r x r matrices I obtained as

the limit of a sequence of the form Jf(ri) where Ty > 0 and T, E .
The generalized Jacobian 3f(8) is said to be of maximal rank

provided every matrix in 3df(6) is of maximal rank (i.e. nonsingular}.

The following proposition is proved on page 71 of F.H. Clarke (1983).

Proposition 2.1: The generalized Jacobian 3£f(0) <is upper semicontinuous,

which means, given € > 0 there exists a § > 0 such that for 1 egUG(e)»

the open ball of radius § centered at 8

’

3f(t) < AF(8) + €B_ -

Here Brxr 18 the unit ball of matrices for which B egBr implies

xT

Bl <1

et S s e Y s L e e e . - . .-
-7 R RS "1"‘-"‘;“‘-‘ ST e eme -
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Remark 2.1: Without loss of generality we can assume |[B|| to be the
least upper bound of |By| where |y| <1 .

Frequently several solutions of equations (1.1), (1.2) can exist
whereupon a robust selection of the functional root is obtained using the
idea of a selection functional p introduced in Clarke (1983). The
robust selection functional retains the continuity properties of the selected
root in small enough neighbourhoods n(e¢,F) ¢ G of a distribution F ,
which can be considered here to be defined by metrices d« . The M-functional
is then defined by y and p as T[y,p,.] . Typical choices for ds«

include dk’ dL s dp the Kolmogorov, Lévy and Prokhorov metrics respectively.

Conditions A':

Aé : TCy,p,Fal = 8,

A{ : ¢(x,7) is an r x 1 vector function on R x O which
is continuous and bounded on R x D where D c © 1is some
nondegenerate compact interval containing 6 in its interior,

and R 1is some separable metrizable space

A! © y(x,1) 1is locally Lipschitz in t about 6 in the sense

[

that for some constant o
lo(x,1) - v(x,0)| < |t - 8]

uniformly in x & R and for all 1 in a neighbourhood of 8

Ag : Letting differentiation be with respect to the argument in

parentheses aKF (t)} 1is of maximal rank at Tt = 6
9

AJ : Given & > 0 there exists an ¢ > 0 such that for all Gen(e¢,F.)

sup

wep 1Kg(7) - Kp (O] <

and

. v
BKG(r) c aKFe(r) + 8§ Brxr uniformly in Tt D .

< mT e e e e IR S
» N, 4 e c e e et e . R “
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. r =
Remark 2.2: A0 = A0
Remark 2.3: For a function ¢ satisfying A{ it follows from remark
2.2 and theorem 6.1 in Clarke (1983) that given & > 0 there exists an
€ > 0 such that for all G éEIl(G,Fe)

sup__p, ,KG(T) - er(r)[ <6,
whenever n(e,F,) 1s generated by metrics dk’ dL, dp .

This establishes the first part of condition A;

Remark 2.4: If KFa(T) is continuously differentiable in 1 at 8
then A3 = Aé , where condition A3 is that of Clarke (1983).

Conditions Aé - A; can be considered fairly straightforward, whereas
the condition A; is not so obvious. When R = E , the real line, it can
be shown to be a consequence of the following theorem, a proof of which is

detailed in the appendix. It is sufficient here to establish the result

for the Kolmogorov distance dk .

Theorem 2.1 : Let A be a class of continuous functions defined on E
with the following properties: (1) A is uniformly bounded, that is,
there exists a constant H such that |f(x)| cH <= for all faA
and x €E ; and (2) A <s equicontinuous. Let Fo = G be given.
Then,

for every & > 0 there is an € > 0 such that dk(Fe,G) < e

implies

. = ! 2.1)
SUPeA SUPxGE [ 4w} |J1‘fdG = [I‘dee‘ <3, (

where integration is performed over the intervals 1, which can be

either open or closed of the form (-»,x) or (-=,x]

R I T ~ -

e . Y " B ;. R LI Y RECIPERERIRE \.‘-_‘..._1‘\.:_: e f,_ -
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Remark 2.5: A similar proof yieldsthe same result with dL replaced
by dk . In some instances Fréchet differentiability with respect to
dk implies that with respect to dL s dp following (6.2) of Clarke (1983).

Consider ¢ with continuous partial derivatives bar on a finite

set of points S(t) . From F.H. Clarke (1983 pp. 75-83) it follows that

Ks(1) =2 Jw(y,r)dG(Y) < J (y,t)dG(y) , (2.2)
from which the right hand side can be expanded to a finite summation
m
) f fj(y,t)dG(y)+ Y W (x,t)G{x}
=1 Y xeS(1)

j
Here fj eA and g—%— (y,t) = fj (y,T) on the connected interval Ij ,

for j = 1,...m . Since ¢ 1is Lipschitz in 1 and 3y(x,t) bounded,

theorem 2.1 implies condition A .

3. UNIQUENESS OF FUNCTIONAL SOLUTIONS TO EQUATIONS

For those psi functions which do not admit a unique root of
the equations, at least a unique root of the equations in a local region
of the parameter space about 6 can be shown to exist for small enough
neighbourhoods of Fe . If conditions A' are with respect to Lévy
or Prokhorov neighbourhoods, existence of a weakly continuous root is shown,
for which the global argument of Clarke (1983) can be used to select it if
more than one root exists. When the Kolmogorov distance is used only
éonsistency is directly established.

The following propositions are established on pp.252-255 of F.H. Clarke

(1983), and obviate the condition of continuous derivatives in the argument

for the inverse function theorem.
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Proposition 3.1: Suppose f satisfies properties described in

Section 2 and
4hg S infypogs IMce, £) |
where the tnfimum 1s taken over all matrices M(8,f) &€ 3£(8) , and for
some & > mreuge) implies
g < infieo M, £) ]
Then For arbitrary 7t , TZGEE%(B) , the closure of the ball Ug(8) ,
[£(t1) - ()] 2 22 |rp-t2] .

Proposition 3.2: Under the conditions of Proposition 3.1

f(Ud(B)) contairs UA 6(f(e))
f

Remark 3.1: For ve UA 6(f(6)) we can define f~1(v) to be the
f
unique T EEUA 6(6) such that f(t) = v and Proposition 3.1 implies
f

"1 is Lipschitz with Lipschitz constant 1/(2Af)

f

Lemma 3.1: Let conditions A' nold for some y,p0 . Then there is a

§; >0 and an €y > 0 suen that Jor all G EEI](EI,Fe) any matriz
M(1,G) e aKG(T)

Wil satisry  |IM(t,G)|| > 2% waere A is defined to be a value for which
M(B,F9) € K (0) implies |IM(8,F5)| > 4
Remark 3.2: If KF (t) 1is continuously differentiable in 1t then

3
the choice of A = 1/(4[\M(6,Fa)'1}|) satisies the criterion of Lemma 3.1.

Proof of Lemma 3.1: Since BKF is upper semicontinuous, choose
8
by Proposition 2.1 & > 0 such that 03K_ (t) < 3K, (8) + AB whenever
: Fe Fe TXT
el (3) . By condition Al: there exists an ¢; > 0 such that
l

G&n(<;,F;) 1implies

BKG(T) c akFQ(T) + ABrxr uniformly in te& D .
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Proof of Theorem 2.1: Given & > o choose ¢ > o so that

Fo(E - C} < &/(8H)

For any x & (-»,-c] and G within Kolmogorov distance §/(8H) from Fe

f, -], o

A

H(G{Ix} + Fe{Ix})

72N

H(G{E - C} + Fe{E -CchH

< §/2
Let €' be given by Lemma 6.2 for the choice of n = §/2.
Choose € = min{e¢', &§/(8H)}. Then for arbitrary x > ¢ and G within

Kolmogorov distance ¢ from Fe

\J fdG - J deel
I I
X

IA

H(G{E - C} + Fe{E -ChH

X
+ supyéc‘JcnI fdG - [cnl deel
y Y
< §/2 + §8/2 by Lemma 6.2
Hence
dk(G,FG) < ¢ implies
SUPgeA SUPyer ‘J £fdG - [dee <8
I

X

....................
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In particular we can choose e* such that

G(xig) - G(xij-l) < n/(4H), for j

i =

Ty

R Ao "R~

dk(G’Fe) < ¢* implies

Let G* be the corresponding improper measure constructed from G.

Then

<

£dG

faor - |
CnIx

SUPfeA SUPxeC lJCﬂI
X

-b:__l’ (7]

It is now convenient to consider case (b) first

sup J fdG* - J fdF _*
feA 1 ear car. °
X X
X lX
< H f d(G-Fg)| + ) Glb,
=11 (b, ,,b. j=1
j (b 1,0y b
n' n'
< H [ d(c-Fe)! ) Glb,
=11 (b, ,,b. j=1
j=117(by_;,by) j

Choose o < €' < e¢* such that dk(G,Fe) <
There are two possibilities for case (a).

by <X <Py

X X X
whence
* %
(+) € (%) + sup H £d(GLF
feh (b. cInl 6
i, X
X
or
1
pix < x < bix+1, o<1 <n’ -1,
for which

(#) < (*) +H lc(bi‘+1) - G(bi ) - Fe(bi'+1) + Fe(bi )
X X X

For either case if it happens that dk(G,F ) < e', then

sup

SUPcen *'PxeC

J fdG* - I des
CnIx CnIx

Then the lemma follows.

for some o < i_<n! -1,

} - Fe{bj}l

} - Fe{bj}

.
¢' implies (*) < n/4.

Either

Y| = (*) < n/4,

< n/2.
X

< n/2.

......
.....................
..................
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.
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'
That is, no further partitioning is necessary. Let {b.}r.‘= be the

set of points that partition (-c,c] formed by combining {le}?io ,

i=1, ..., k. Denote F* the possibly improper distribution that
attributes weight Fe(bi) - Fe(b;) to the points bi’ and weight

- . 1 s
Fs(bi) - Fe(bi_l) to the points p; = 7{bi + bi+1)’ i=1, ..., n -1,

Suppose x€C is given. Then either: (a) there exists an o< i <n' -1

or (b) there exists an 1 <i_<n

such that b. < x < b.
1 X

+1°
X lX

which x = b. .
Ix

For case (a) and feA

lx
fdF* - J fdF | < § j ’f(p.) - f(y) |dF (y)
jcmx Cnl s’ 21 b b.) j )

105 1,5
J(bi ’C]nle(Y)d(F* = Fe)(Y)[
x
n
E F {C} + 2H{F (b +1) - Fe(bi )}
X X

< n/4 /2 = 3n

For case {(b) where x = bi for some 1 <i <n
X

e[ fdF* - J dee
Cnl CnI
X X

1
X
) j ff(p.) - £(y) [dFy(»)

CHPT. DL

< %_FG{C} < n/4

Hence

SUp. 4 SUPy ’[CnledF* - ICnI‘deG

This is true for any distribution satisfying the inequalities (6.2).

3
<7

L -,.—_.-_-_,_'_., et

- ‘o Lte N0 P e LN A s . e e e s ) X
P fmhgigfhf P T e T et Yl e T LR el el _n
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But this contradicts the initial assumption. Now since
G(y:) < G(a) + %{G(b') -G6(a)) j=1, ..., k,
J
then
- 1 -
G(yj) - G(yj_l) < (G ) -G(a)) <n
Note that y, = a, y, > a, and if y, <b, then G(b7) - G(y,) = 0.
Let
a =Xy <X < ... < Xpr = b

be the partition formed from {y.}. . u {b}

J

k
j=1

Lemma 6.2: Let Fe be given. Also for given ¢ > o let C = (-c, cl.
Then ¥ n > o J €' > o such that dk(G’Fe) < e¢' implies

SUPrap SUPy o JCnIxf(y)dG(y) - ICnIxf(y)dFe(y) <n (6.1)

where intervals Ix may represent either open or closed intervals from

- to X.

Proof: Given n > o, let {di}€=1 be the at most finite set of points

in C suc. rhat F(d;) - Fe(d;) > n/(16H), if they exist. Since the

family A is equicontinuous and C , the closure of C, is compact, we

may choose a decomposition

-C = ap <ay < ..... < am = C
so that a, | < x <y <a; implies |£(x) - £f(y)| < n/4, for every feA,
and i =1, ..... , m. Let {a;}§=o be the further decomposition obtained
L. . m 2 * *
by combining the points {ai}i=o and {di}i=1’ so that a1 <3,
i =1, ..., k. From Lemma 6.1 whenever Fe(a;-) - Fe(a;_l) > n/(4H)

. o o n;
there exists a finite decomposition {xij}j}o so that

* *
3i01 T %o S ¥y S e S "ini ey
for which
- - . j = 6.2
Fa(x;3) - Falxjjopy) < n/(4H) j=l,...,n, (6.2)

* - * *
If Fe(ai ) - Fe(ai-l) < n/(4H), set n, = 1, Xio T 3 and X5 = a;.

Santa talitat Sl U R
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6.  APPENDIX

The proof of theorem 2.1 is preceded by some necessary lemmas.

The notational abbreviation G(x ) = lim h+o G(x - h) 1is used.

Lemma 1: Let G(x) be any distribution function for which G(x) - G(x") <
n/4 for x &(a,b), where a <b real, and n >0 are given. If

G(b") - G(a) > n, then there exists a finite partition

so that

G(x.) - G(x. <mn, j=1,...,k".

( J) ( J_1) 1, J ,
Proof: Define G !(t) = inf {x| G(x) 2 t, x & [a,b]}
Since G 1is right continuous G(G™1(t)) =2 t, choose
St J -y L

y; = 671 (6(a) + {6 - Gall,

where k 2 1 1is chosen so that

G(b) - 6(a) _, . 2(6(b7) - G(a))

k
n n
Then
j -
G(yj) - G(yj_l) 2 G(a) + {{G(b) - G(a)) - G(yj_l)
> G(a) + %{G(b’) - G(a))
- {G(a) + li—l(c(b') - G(a)) + n/4}
= MG - 6(a)) - n/4
* n/4
If Y € (a,b), j=1,...,k, then Y; > Y1 For if Y5 = Y5 1

then

v

Glyy) - Gly;_p)

z n/4

“
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The problems induced by nonsmooth psi functions are not
unique to proofs of Fréchet differentiability, and are applicable
to many asymptotic proofs. More frequently it is the case, that
rather than consider the difficulties, the appropriate smoothness

assumptions are made in the proofs, but somehow the results are

r
.5
|
r
|

expected to be applicable to those continuous but nonsmooth functions also.
Nonsmooth analysis can the be considered as one possible avenue

of justifying such an approach.
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11
With the choice of selection functional p(G,7) = |t - G I(E)I,
whereby the root closest to the median is selected, the functional

oy s P ) _ X0,
T[wa,b,c’p’ ] is Fré&chet differentiable at Q(-gz.),

In a sense weak continuity and Fréchet differentiability of the
functional at the empirical distribution function are also important.
Weak continuity at Fn indicates stability of the estimate in the
presence of rounding errors in the recording of observations,
and at least for sufficiently large n the effects of gross errors
can be considered blunted. Fréchet differentiability at Fn on the
other hand could be used to justify asymptotics involved in Edgeworth
type expansions and bootstrapping, for example as considered in
Hampel (1982) , Beran(1982). When the psi function is smooth, the
only change to the arguments of Clarke(1983) forFréchet differentiability

at Fn , 1s to replace Fe by Fn in conditions Al-A4.

Similarly the same substitution of conditions can be made in
the results of this paper, however if it should occur that an observation
X falls exactly at the point where y(X,t) does not have a continuous
partial derivative at 1 = T[Fn] then the generalized gradient
aKF (T[Fn]) does not reduce to a single matrix. Even though such
an Zvent would occur with probability zero in most forseeable examples
in whichthe underlying distribution was absolutely continuous, it can
be said nevertheless that the proof used in theorem 4.1 does not follow
through. In this instance the question of whether T is Fréchet
differentiable at Fn is then left open. At least in the domain of
M-functionals defined through (1.2}, it can be concluded that Huber's(1981)
remarks should not be interpreted in the sense that Fréchet differentiability

is too strong. This is only the case for nonrobust M-functionals,

and consequently we should consider Fréchet differentiability an advantage.




-

SO S Sl I Sl v Sl Gl A st e A B AR e - &

- 16 -

e A'“ follows by Theorem 2.1 and because a(11-kt,1) and
3y(t;+kTy,T) are bounded. Assumption (4.1) holds for the
Kolmogorov distance through integration by parts and noting that ¢
is a function of total bounded variation. Thus by Theorems 3.1

if and 4.1 there exists a root that is Fréchet differentiable at

Fg = @[x o1

;2 } with respect to d, . Since ¢ has a bounded density
T 1is Fréchet differentiable with respect to dL , dp also.

Consequently, the infinitesimal robustness of this M-estimator
at the normal parametric distribution is evident through Fréchet

differentiability. It is also Fréchet differentiable at the

distribution Fo[x'el} for which the density function of Fp is

Ve 02
) o
£5(x) = (-¢) 2 for |x| <k
2r
2
k
5 - kx|
(i=e) o2 for |x| > k
VZr

with k and e connected through

2¢(k) _ €
kK 2 o(-k) = T-¢

(¢ = ¢' being the standard normal density). Then the M-estimator

coincides with the mle, and provides another example of a robust
and asymptotically efficient estimator.

Examples where multiple roots of the equations exist include
Hampel's 3-part redescender M-estimator for location dependent on

three parameters a,b,c;

Ya,b,c (X) = X x| < a
a sign(x) a<|x|sb
a CC.-IbXI signx) P S [x] < ¢

0 c < |x}

A e N e et A - . el
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M(8) = - 6'1; IW{(Y)dNy) 0
(5.1)
0 [ng(y)d¢(y)

Condition AJ follows since E¢[¢] =0 . A{ , Aé hold by

inspection, and A; holds since M(8) 1is nonsingular. Remark 2.2

suffices for the first part of A; . To apply theorem 2.1 consider the
function
( - L —(x-‘rl) 1
T2 ————?r—
(t1-kto,T1+kT2)
2
-(x-1)}  -(x-1y)
2 3
| T2 T2

(x) (x) -1 -k
+ :Ezi- [ I ( _,m s T.l _l(,r 2'] + I [‘T 1 4_l<‘r 2 ’ao)

It is clear that A = {f(.,1):x €D} forms a bounded equicontinuous

class of functions on E . Also

kK. (1) = f £(x,2)dG(x)
J(t)-kty,11+kT2)

+ ay(t1-kt,7)Glty-kta} + 3v(t)+ktp,3)Glty+kTa}

where differentiation of ¥ is with respect to the second argument, while

- X-el
> K. (1) = J £(x,y)dF,(x) , where F,(x) =¢ [ }
L; FO (Tl~kT2,T1+kT2) g 8 62
-

&

&

b

a8

“’ .

1

0

—
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for sufficiently large k . Consider the two term expansion,
0= KGk(T[Gk]) = KGk(e) + M(tk,Gk)(T[Gk]-G) R (4.3)

where i?k-ei < lT[Gk] - 8], which tends to zero as k - = by

theorem 3.1, and ;k is evaluated at different points for each

component function expansion obtained as a consequence of Proposition 4.1
(i.e. ?k takes different values in each row of matrix M). See from

(4.3), (4.1) and Lemma 3.1 that

ITCG 3 - 8] = O(KGk(e)) = 0(ep)
Also,

T(G, 1 - 8 = -M(e)"KGk(e) - M(8) THM(T, ,6,) -M(0) H(TLG, ] - o)

By upper semicontinuity of KG(T) in ™ and (4.2)
lIM(z,,6,) - MBI = o(1)
So

|06, 1 - ¢ - Tée(Gk-Fa)] = 0(1) 0 (d=(6,Fy)) = o(e,)

5. EXAMPLES AND CONCLUSION

Huber (1964, 1981) introduced a proposal for estimation of location

and scale of the normal distribution defined as a solution of

)
X - _
fw[ T2 IJ dF"(x) =0

where 0 = {(t;,12): - ® < 1] <o | 15 > 0} and the vector function

v = (y1,%) ' where

v1(x) = max [-k , min(k,x)]
valx) = ¥1(x)2% - B(K) ,
and 8(k) = [min(k2?,x2)d¢(x) . Here ¢ denotes the normal distribution.

"

setting 8 = (81,82) , where _ now distinguishes the vector parameter,

it follows that since K 78) is continuously differentiable, the Jacobian
4

A A S T P I R > ® - .. i rend St B T UV
St R R R D Y s 21 RN L
e Y S H PRI I8, PP PP RO P I A S PO 2 N
ST ST 3 " e ALt e,
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Theorem 4.1: Let p(G,7) = |1-8| and assume conditions A’

hold with respect to this functional and neighbowrhoods generated by

the metrics d« on G . Suppose for all G&G
J lJJ(X,e)d(G-Fe)(X) = O(d*(G,Fe)) (4.1)
R

Then Tly,p,+] <s Fréchet differentiable at Fq with respect to

(G,d+) and has derivative

T (GFy) = M) [ w(x0)d(6-F ()
5 e

To prove the theorem it is necessary to introduce the following

generalization of the mean value result described as Proposition 2.6.5

in F.H. Clarke (1983)

Proposition 4.1 Let f be Lipschitz on an open convex set U 1in

E' and let T, and T, be points in U . Then one has

f(1)) - f(13) € co ¥f([1y,12]) (7,-1})
(The »ight hand side above denotes the convex hull of all points of the
form Z(tp-1)) where Z &€3f(u) for some point u in [t1],1,] .
Since [co 3F([ty,121) I (1-11) = colaf(lty,12))(1-11)] , there is no
ambiguity.)

Proof of Theorem 4.1: Abbreviate T[y,0,.] = T[.] and let

-.';;; +

- k*,e be given by Theorem 2. Let {ek} be so that ¢ + 0 as

e k > and let {G.} be any sequence such that G & n(e ,Fy) . By
@

- theorem 2, T[Gk] exists and is unique in UK*(B) for k > kg where
:} €. S €. By A, see that for arbitrary 6 > 0

A 0

C i i 4.2)
@ aKG (1) < BKF (t) + 6Brxr uniformly in te&€ D (
o k 0

b

C

-.

S AT SO SR S AT TP LA Y PO P




(et e

= - 12 -

Proof of Theorem 3.1 : Since aKF (1) 1is upper semicontinuous in
8
t choose 0 < x* < min(8;,k) such that reUK*(e) implies

1nf3KG(T) IM(z,6) || > 22 for all G &n(e),Fy)
where the infimum is taken over all matrices M(t,G) & aKG(r) . Here

§; , €, , and X are defined in Lemma 3.1. Hence

4r(G) = inf fM(8,G) || > 2 .

ey

Choose 0 < €* < ¢; so that the following relations hold

3Kg(1) < aKFB(r) + (A/4)B_ by Afy
c aKF (8) + (x/Z)Brxr by Proposition 2.1
8
c aKG(e) + XBrxr by A'y4

Then for every M(t,G) e aKG(r) there exists an M(8,G) & aKG(O) such that
[IM(<,G) - M(8,6) || < < 2x(G),

whenever Ge n(e*,F.) and uniformly in Tt e UK*(B)

By Proposition 3.1 KG(.) is a one-to-one function from UK*(G) onto
KG(UK*(S)) and by Proposition 3.2 the image set contains the open ball
of radius Ax*/2 about KG(e) . The argument for uniqueness now proceeds

as in Clarke (1983).

4, FRECHET DIFFERENTIABILITY

It will be assumed in this section that KF (t) has at least
0
a continuous derivative KF {(t) at t =0, which is denoted M(6)
6

.. This is common with absolutely continuous parametric families. With this

. restriction Fréchet differentiability follows.

@

-

- -
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Hence given M(7,G) & BKG(r) for 1 e U61(e) there exists M(e,Fe) (= aKF (8)
such that
[|M(t,6) - M(8,F )| < 2a,
whence by Proposition 3.1 ||M(t,G)|| > 2 .
[t is now possible to state and prove the uniqueness argument of Theorem
3.1 of Clarke (1983) using weakened conditions A’ . The result also

implies existence of a weakly continuous root for either Lévy or

Prokhorov neighbourhocods. As usual the following selection functional is

only used as an auxilliary device.

Theorem 3.1: Let o(G,t) = |t~8| and suppose conditions A' hold.
Then given «x > 0 there exists an e > 0 such that G ¢=11(e,Fe)
implies T[w,0,G] exists and is an element of UK(e) . Further
for this e there is a «* > 0 such that

[(w,G) aU_.(8) = Tly,e,G1 ,
and aKG(r) 18 of maximal rank for 1 e:UK*(e) . For any null sequence
o positive numbers {en} let {Gk} be an arbitrary sequence for which

. m
Gk . n("k’Fe) . Then

lim T[w,o,le = T[w,p,Fe] = 8

k-0

—




Ve d. T e T oW

L aten aat aees S i Arat SRS SO

Hampel, F.R.: Small-sample asymptotic distributions of M-estimators
of location, Biometrika, 69, 29-46 (1982)

Huber, P.J.: Robust estimation of a location parameter, Ann. Math.
Statist., 35, 73-101 (1964)

Huber, P.J.: The behaviour of maximum likelihood estimates under
non standard conditions, in: Proc. Fifth Berkeley Symposium on
Mathematical Statistics and Probability Vol. 1, University of
California Press, Berkeley (1967)

Huber, P.J.: Robust Statistical Procedures, Regional Conference
Series in Applied Mathematics No. 27, Soc. Industr. App. Math.,
Philadelphia, Penn. 1977

Huber, P.J.: Robust Statistics, Wiley, New York, 1981

Kallianpur, G.: Von Mises functions and maximum likelihood
estimation. Sankhya, Ser. A., 23, 149-158 (1963)

Reeds, J.A.: On the Definition of von Mises Functions, Ph.D
Thesis, Department of Statistics, Harvard University, Cambridge,
Mass. 1976.

Von Mises, R.: On the asymptotic distribution of differentiable

statistical functions. An.. Math. Statist. 18, 309-348 (1947)

. . . . . . . Lo, ) . . - i
Y % T R AT e . IR e e e ATV P R . . . Sl T
N R T N N O A L A S LTS LGP LU S SV L LI WGP S VA ST L WS- GCRIE WV - SO WIS R N v




L gl Sl S A A A S A S i)

L}




